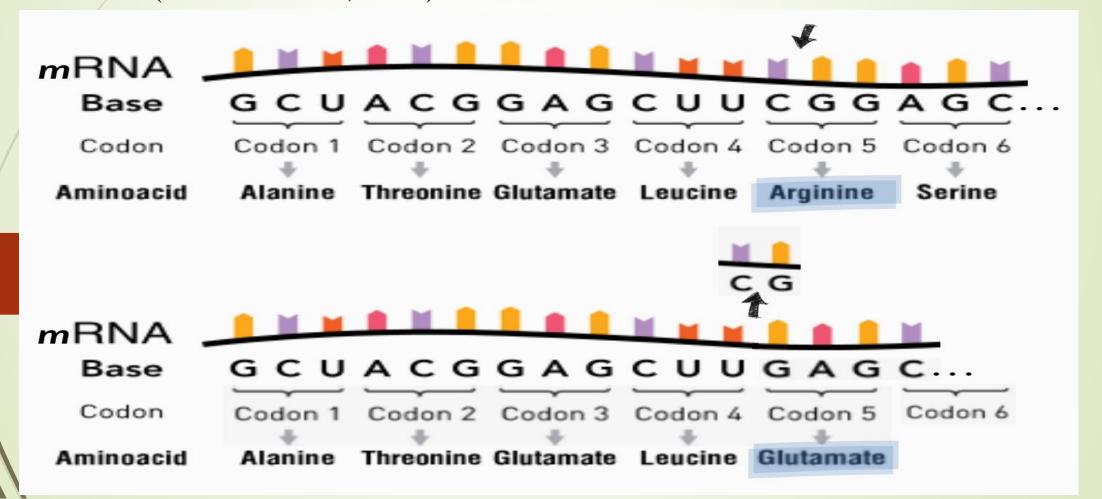
# MUTATIONS AND SINGLE NUCLEOTIDE POLYMORPHYSIMS (SNPs)

#### **MUTATION**

- ➤ DNA mutations are heritable changes in DNA that, while often neutral or with subtle effects, can sometimes lead to observable phenotypic changes, potentially causing diseases or adaptations (K & E, 2017).
- Mutations are changes in the DNA sequence that can occur spontaneously or be induced by environmental factors.
- These can involve single base changes (point mutations), insertions, deletions, or larger rearrangement (Brown, 2002).


## **Types of Mutations**

Point mutation: A single nucleotide change, such as a substitution, insertion, or deletion (Editors, 2016).

|               | No mutation | Point mutations |          |              |                  |
|---------------|-------------|-----------------|----------|--------------|------------------|
|               |             | Silent          | Nonsense | Missense     |                  |
|               |             |                 |          | conservative | non-conservative |
| DNA level     | TTC         | TTT             | ATC      | TCC          | TGC              |
| mRNA level    | AAG         | AAA             | UAG      | AGG          | ACG              |
| protein level | Lys         | Lys             | STOP     | Arg          | Thr              |
|               | NH-G*       | NH5             |          | HIN NH;      | н,с тон          |
|               | 78          | AA              |          | 7/           | · ·              |

## **Types of Mutations**

Frameshift mutation: A insertion or deletion of nucleotides that changes the reading frame of the genetic code (Kanakan et al., 2022).



## **Types of Mutations**

Chromosomal mutation: A change in the number or structure of chromosomes (Loewe &

Hill, 2010). Translocation Deletions Duplication Inversion Segment rotates 180° Chromosme Segment Lost A segment from chromosome is A segment from one chromosme A segment of a chromosme transferred to another is transferred to its homologous arm is inverted chromosme, giving it a duplicate

of some genes

# **Factors Influencing Mutation**

#### **➤** Genetic Factors

- Genetic predisposition: Some individuals may be more prone to mutations due to their genetic makeup.
- Family history: A family history of genetic disorders or cancer can increase the risk of mutation (Gillio et al., 2007)..

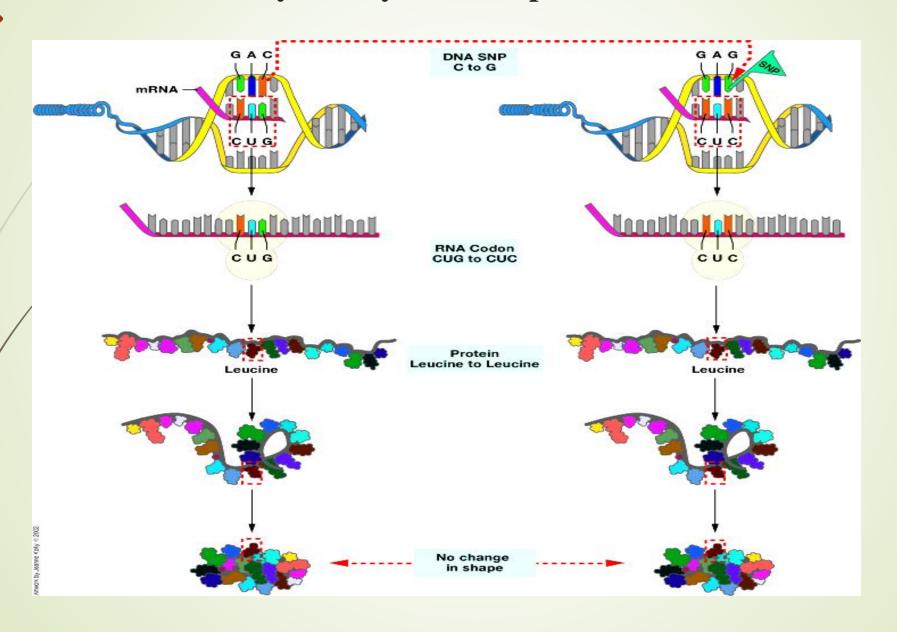
#### > Environmental Factors

- Radiation exposure: Exposure to ionizing radiation, such as X-rays or gamma rays, can increase the risk of mutation.
- Chemical mutagens: Exposure to certain chemicals, such as pesticides or heavy metals, can increase the risk of mutation.

# **Factors Influencing Mutation**

#### > Lifestyle Factors

- Smoking: Smoking can increase the risk of mutation, particularly in lung cells.
- Diet: A diet high in processed foods and low in fruits and vegetables may increase the risk of mutation.
- Age: The risk of mutation increases with age due to the accumulation of genetic damage over time (Romero et al., 2022).


#### > Random Errors

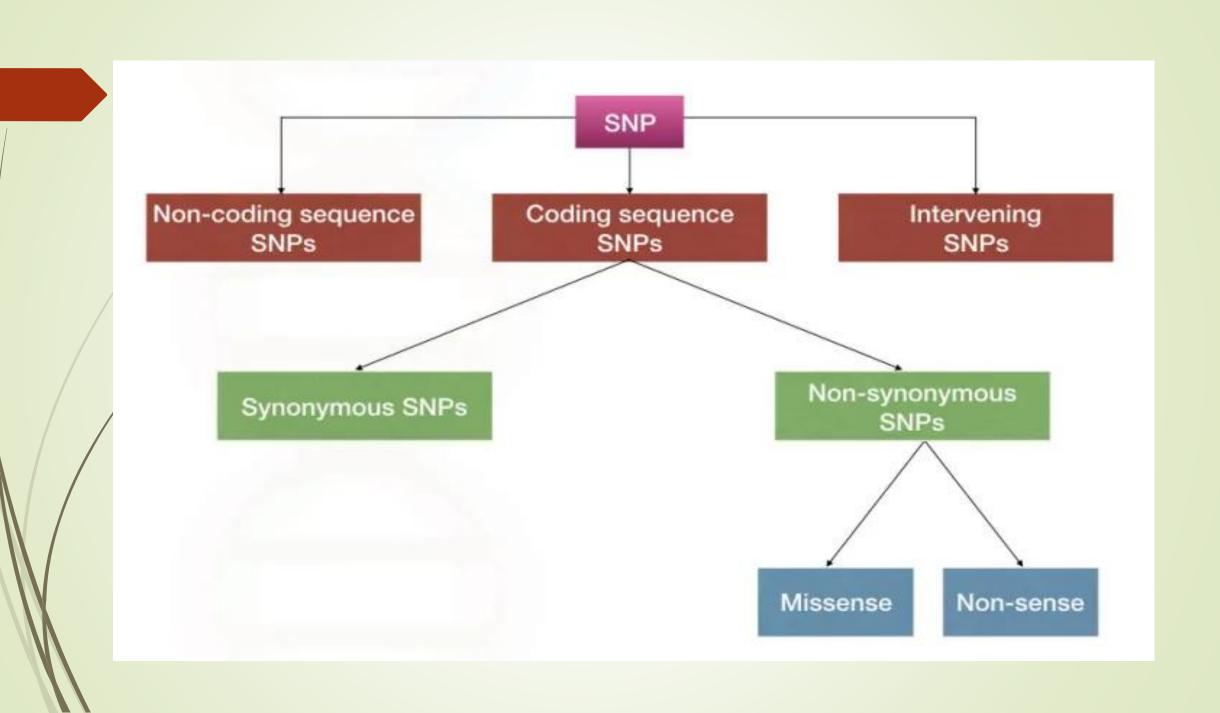
- Replication errors: Errors during DNA replication can lead to mutations.
- Transcription errors: Errors during transcription can lead to mutations.
- **Epigenetic Factors**: Changes in epigenetic marks, such as DNA methylation or histone modification, can influence mutation rates.
- Genomic Instability: Conditions that lead to genomic instability, such as cancer or certain genetic disorders, can increase the risk of mutation.

# SINGLE NUCLEOTIDE POLYMORPHIMS (SNPs)

- Single Nucleotide Polymorphisms (SNPs) are the most common type of genetic variation found in the human genome. Each SNP involves a change of a single nucleotide A, T, C, or G at a specific position in the genome (Brooks et al., 2016).
- It occurs approximately every 100–300 base pairs and is present in both coding and non-coding regions of the genome.
- Most SNPs are biologically neutral, but some influence disease susceptibility (e.g., diabetes, Alzheimer's) and response to drugs (e.g., warfarin, clopidogrel).
- SNPs are inherited and serve as genetic markers in population studies and disease association studies.
- Example: Substitution of C with T in a gene regulatory region may alter gene expression.

#### Some SNPs may or may not alter protein structure




#### TYPES OF SNPs

#### 1. Coding Region SNPs:

- ❖ Synonymous (Silent): No change in the amino acid sequence. Example: GAA → GAG (both code for Glutamate).
- ❖ Non-synonymous (Missense): Alters a single amino acid (e.g., Glu → Val).
- **♦** Nonsense: Introduces a premature stop codon (e.g., UAU → UAA).

#### 2. Non-Coding Region SNPs:

- Promoter or Enhancer SNPs: Affect transcription factor binding and gene expression.
- Splice Site SNPs: Disrupt mRNA splicing, leading to altered protein isoforms.
- UTR SNPs (5' or 3' Untranslated Regions): Influence mRNA stability, localization, and translation efficiency.
- 3. Intergenic SNPs: Located between genes. May affect regulatory elements, non-coding RNAs, or long-range chromatin structure



# Techniques to detect known Polymorphisms

- Hybridization Techniques
  - Micro arrays
  - Real time PCR
- **Enzyme based Techniques** 
  - Nucleotide extension
  - Cleavage
  - **■** Ligation
  - Reaction product detection and display

# Techniques to detect unknown Polymorphisms

- Direct Sequencing
- Microarray
- Cleavage / Ligation
- Electrophoretic mobility assays

# Significance of SNPs

- In Disease Diagnosis
- In Finding Predisposition to Diseases
- In Drug Discovery & Development
- In Drug Responses
- Investigation of Migration Patterns

## REFERENCES

Alberts, B. et al. (2022). Molecular Biology of the Cell (7th ed.). Garland Science.

Brooks, L. D. et al. (2016). dbSNP: A database of genetic variation. *Nucleic Acids Research*, 44(D1), D800–D806.

Collins, F. S. et al. (2003). A vision for the future of genomics. *Nature*, 422, 835–847.

Cooper, G. M., & Hausman, R. E. (2019). The Cell: A Molecular Approach (8th ed.). Sinauer.

Feero, W. G. et al. (2010). Genomic medicine — An updated primer. New England Journal of Medicine, 362(21), 2001–2011.

Griffiths, A. J. F. et al. (2020). Introduction to Genetic Analysis (12th ed.). WH Freeman.

Jorde, L. B. et al. (2019). *Genetics Essentials* (3rd ed.). Macmillan Learning.

Lodish, H. et al. (2021). Molecular Cell Biology (9th ed.). W.H. Freeman.

NIH. (2021). Genetics Home Reference. <a href="https://ghr.nlm.nih.gov">https://ghr.nlm.nih.gov</a>

Strachan, T., & Read, A. P. (2018). Human Molecular Genetics (5th ed.). Garland Science.